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Chemical Kinetics

Chemical Kinetics helps us to understand how chemical reactions
OCCLIT.

Chemistry, by its very nature, is concerned with change.
Substances with well defined properties are converted
by chemical reactions into other substances with
different properties. For any chemical reaction, chemists
try to find out

(a) the feasibility of a chemical reaction which can be
predicted by thermodynamics ( as you know that a
reaction with AG < 0, at constant temperature and
pressure is feasible);

(b) extent to which a reaction will proceed can be
determined from chemical equilibrium;

(c) speed of a reaction i.e. time taken by a reaction to
reach equilibrium.

Along with feasibility and extent, it is equally
important to know the rate and the factors controlling
the rate of a chemical reaction for its complete
understanding. For example, which parameters
determine as to how rapidly food gets spoiled? How
to design a rapidly setting material for dental filling?
Or what controls the rate at which fuel burns in an
auto engine? All these questions can be answered by
the branch of chemistry, which deals with the study
of reaction rates and their mechanisms, called
chemical kinetics. The word kinetics is derived from
the Greek word ‘kinesis’ meaning movement.
Thermodynamics tells only about the feasibility of a
reaction whereas chemical kinetics tells about the rate
of a reaction. For example, thermodynamic data
indicate that diamond shall convert to graphite but
in reality the conversion rate is so slow that the change
is not perceptible at all. Therefore, most people think
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Chemical Kinetics

that diamond is forever. Kinetic studies not only help us to determine
the speed or rate of a chemical reaction but also describe the
conditions by which the reaction rates can be altered. The factors
such as concentration, temperature, pressure and catalyst affect the
rate of a reaction. At the macroscopic level, we are interested in
amounts reacted or formed and the rates of their consumption or
formation. At the molecular level, the reaction mechanisms involving
orientation and energy of molecules undergoing collisions,

are discussed.

Rates of Reactions. Consider a simple hypothetical reaction of the type .
A—P |

The rate of the reaction at any given timé will depend upon the concentration of the reactant A

at that time. As the reaction progresses, the concentration of A keeps on falling with time. The rate
] e 1

of the mﬁumgﬁmimhﬁmhmm
r=-dc,/dr . .

th-&hilﬂ#hwlfﬂﬂlﬁﬂmhhmﬁmﬂf&inlni.llﬁnitﬂsi:lnillj'mﬂ
. nterval of time dr, ¢, gives the concentration of the reactant A at the given instant and £ is 2

constant called the rate constant or velocity constant of the reaction.

meumﬂmmrpﬂumﬁmﬁm Hence, the rate of the reaction

clnﬂmhmhtmﬂmhmﬁupmduthuwﬂ.m.
. r = dep/dr
wheudc,hnh:ﬂnitnhmﬂynunmin&mmmﬁmnfm- oduct
infinitesimally small interval of time dr, F' rome
FromEgs. 1 and 2, r = - de,/dr = dep/de
For areactionof the type A +B — L + M,
the reaction rate can be expressed as
| r= - dey/tt = - degldt = deyldt = dey/dr
Consider a general reaction of the type,
@A + B+ ¢C — IL + mM + pP

* The rate of such a reaction is expressed in terms of fall in concentration of a reactant per mole

or increase in concentration of a product per mole. Accordingly,

[

F==-= ‘—cﬁ-.— ﬂ:-lﬂ.-lﬂ-iﬂ. lﬂl:l!
md pod
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Chemical Kinetics

Units of rate of a reaction
concentration time™.

mol L's™,

The Rate Ialﬁmd the Rate Constant. The rate of the reaction | roducts, i
experimentally found to be given by AR o

re= ke, o Eg. 1)

where k is the rate constant or the velocity comstant of the reaction at the given temperature. If

concentration of A is I.Ill:l.il‘.'}’. l.e., ex=1, then, evidently, r=k. For a general reaction of the type :
. aA + bB + ¢C — Products

the rate of the reaction is given by the rate-law expression
r= kehchef.

Ifey =cg =cc= 1, thenk = r Thus, the rate constant ion, i
' : ' of a reaction, in general ,
defined as the rate of the reaction when the concentration of each reactant is unity, : )

"

Units of rate constant
For a general reaction
aA + bB — ¢C + dD
Rate = k [A]* [BF
Where x + y = n = order of the reaction
Rate

k= [arFBP
_ concentration @ 1
time (concerntration)”

Concentrationt™"

time

SI units of concentration, mol L™ and time.
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Units of Rate constant

Reaction Order Units of rate constant

mol L™ 1 E
Zero order reaction 0 - 0 =molL"'s

[molL

mol L™ 1 o
First order reaction 1 P X (mol L_]] =8

mol L™ 1 e O
Second order reaction ) s ( o mol~'Ls

mol L _

Order of Reaction

Rate = I [A]* [BF

x and y indicate how sensitive the rate is to the change in concentration
of A and B. Sum of these exponents, i.e., x + y in (4.4) gives the overall
order of a reaction whereas x and y represent the order with respect
to the reactants A and B respectively.

Hence, the sum of powers of the concentration of the reactants
in the rate law expression is called the order of that chemical
reaction.

Order of a reaction can be 0, 1, 2, 3 and even a fraction. A zero
order reaction means that the rate of reaction is independent of the
concentration of reactants.
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m:.wm.mmrﬂﬂmmmqmmummnm
reactions

fa) A+ 1B+ 3 —» Products

i) A+ — iC+D+2IE

S Solution : fa) Rale, r = - d]AJd = =172 diB)/dr = = 1/3 ACldr.
(B) Rate, ¢ = - d[Alidt = = /3 dBlidt = 12 dCYdt = d(DYdr = L2 d[E]/dt

Example 2. The rate of the homogeneous gaseous reaction INO(g) + Cly(g) — ZNOCKg) is doubled
when the chlorine concentration Is douhled but increases by a factor of eight when the concentrations of bath
the reactants are doubled. Determing the overall order of the reaction and the arder with respect to NO and

Cly. !

Solution : Rate = KNOP[CLI® where we have to determine @ and b.
If a=0 and b=1 (overall first-order), then r = k)[Clz] :
A little reflection will show that this is not at all acceptable. :
If a=1, b=1 {overall second-onder), then r = kNOJICl] -
Doubling the concentration of both the reactants will increase the rate by a facior of 4, which is not given. f
If =0, bw2 (overall second-order), then r = k[Ch]* ' : I .
Duoubling the concentration of Cly will increase the rate by a factor of 4 which, wo, is nol given.
. Ifa=1, b=2 (overall third-order), then r = ky[NOJ[CL,}’ i

Doubling the concentrations of both the reactants will, no doubt, increase the rate by a factor of 8 but doubling the
concentration of Cly alone will increase the rate by a factor of 4, which again, is not given. The other slernative
for a third-order reaction is a=2, b=1 so that r= ky[NOJCl;]. We immediately see that this rate equation satisfies
both the given conditions. Hence, overall the reaction is of the third order, being of the second order in NO and

of the first order in Clj.
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“ntegration of Rate E@Imhns
1. Integration of Rate Expression for First-Ovder Reactions
The differential rate expression for the first—order reaction, A — P i given by .

_ = - dcpfdt = depldt = key : . AT}

Separating the variables, i.e.. bringing concentration terms on Ofc side and the time on the other
side, we get ' I I

- dcglcy = tp!ﬁ ' . r.+{3:|

" Before performing the-actual integrafion, let us first ascertain the limits of iniegration. Let the
{nitial concentration at initial time t=0"be ¢ Subsequently, at any other time, f, the conceniration
will be ¢. On integration, We obtain 5

['o P . .
I ~dcp lca = kl. ‘Ltﬂ -9
Gy ' : . ) .
[ i !
[—lﬂfﬁllq] = -‘:1[1'10
o - “lnlcley) = kit
or c= -‘.?n.e_t" ' : } . ' {lﬂ}

From Eg. 10, we can also write

k, = Lt In cofc A1)
Eq. 11 gives the expression for the first-order rate constant, ki.
£q. 11 is usually writien in asottier form. If initial concentration of tlie Teactant is @ and x moles

of it react in time 1, then the mgc:nmthn_i"uf the reactant left behind at time ! will be a-x. In such
2 case, ¢g o a and ¢ o«-(d - %), Hénge, Bq. 11 takes the form

kt‘l‘ﬂ £ % i (1)
I a=x ' X

Eq. 12 shows that the concentration of reactant in a first-order reaction decreases exponentially
with tirne - this is shown graphically in Fig. 1. The plot of In ¢ vergys [ is shown in Fig. 2.
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1 kT

For a first-order reaction, the concentration of the
increases exponentialy wih time, as ilbustrated i Fig. 3. O the produet

T I :
=
| a
2 ;
z
o
o
[— — —_—
Fig. 1. The plot of ; s I
-1 ot of Fig. 2. The plot of In ¢ - Fig. 3. Concentrati i
Wmm versus time versus time f for : pl.clrl‘Efm' the mﬁm:mﬁu Eﬂm
 first-order reaction, @ first-order reaction, .. of a first-order mcthﬂ

2. Integration of Rate Expressions for Second-Order Reactions.
The differential rate expressions for the second-order reactions are as follows :
Case I. When the Reactanis are Differeat. Consider 2 second-order reaction

A+EBE — P

where the igitial concentration of A is @ mol dm> and that of B is b mol dnr>. Afier time ¢, x mol
dm? u?hmtﬁl: mol dm of B Tﬂ‘-ltj-llgilm x mol dm? of the product. Thus, the reactant
concentrations ai time  are (a - x) and (b - ), respectively. The’differential rate expression for the

= -dAVd = - BJd = dPVd = KIA]B]

- '\\‘
. ey,
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' "Phis can be written as r = dv/dr = kyfa - )b - x) < nd13)
where k; is the second-order rate constant. Separating the variables, we have .
d/(a - xXb - x) = kydt A14)
Resolving into partial fractions (assuming that a > b), we have

1 LT .
(@a-x)b-x) a-b ﬁ'.‘l‘; (15

Using this result, we can integrate Eq. 14 as follows :
dr
It-wia-n 'aia”ﬁ"jf—; ":j* .{16)

We have taken the factor 1/(a - b) outside the integral sign because this quantity is a constant.
Carrying out the integration, we have

' n—;{-ln{b—:}—{-hh-xﬂ] <kt +C

l a-x _
.or I_bh[b_r]-l;ﬁi-ﬂ' S 1)

.E:ml:'i:memmmm‘inwumwmc.wm:lllhann-ﬂ.x-ﬂ. Hence, from
17, :

- stzu(y am

Substituting this value of C in Eq. 17, we have

alah[::;]”’” nib-h[%)

Rearranging and solving for k;, we get

o1 a-x a | b(a - x)
= 1 ( ]- ln(—]] = ) .A19)
. h '[d-bli"[u b'-.l'. Lb [q-‘,ﬂ};ma{b.'-x] ’ .
Eq. 19 is the required integrated expression for the rate constant of a second-order reaction.
Here we have assumed that a > b. If we had assumed that b > a, then the reader can easily verify
that : ’
1 alb - x) .
ky = ,
_ ! (b -ay " b(a - x) ﬂ:m
. It can be easily seen that meither Eq. 19 nor Eq. 20 is
applicable when the concentrations of both the reactants are
the same, [.e., when a=b. U
If we write Eq. 19 in the form |
| b(a - x) x
ll.'l - =]
== alb - x) kyt «~@2l) | =
“we see that it is the equation of a straight line passing | -
-~ through the origin (viz., y=mux), where
yud lnb{“'”;m-kg;.r-: i
’ a-b a(b - x) [—— -
. The plot of the left-hand side of Eq. 21 versus 1 gives a
swaight line (Fig. 5) whose slope is equil to the rate | > Fuion strue comant fors
- constant, k. .

T AT T
]
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Case II. When Both the Reactants are the Same. This, in effect, means that two molecules of
the same reactant are involved in the chemical reaction. The second-order reaction in this case
would be represented as

A — P
and the rate of the reaction would be cxpressed as o . .
r = deldt = kya - 12 - - BN 7
where, as before, a is the initial concentration of A, x is the concentration of the product formed
after time ¢ and (a - x) is the concentration of A remaining at time /.

Separating the variables and integrating, we have

. .
Je% =kt : | )
1
[—EE—J(-H =kt +C or PR kxy + C ‘.. (M)
We know that at £=0, x=0 so that C=1/a. Hence, '
l B l !
&-X * ' N . - - S,

Tﬂwmmmmfmtl.ugn

Tx' 1]. _[-r{a xi] e

which is the required ]‘.nugraled expression for the rate constant
of a second-order reaction in which two molecules of the {
same reactant are involved in the reaction.

The classic example of the above type of the second-order
reaction is the gaseous decomposition of hydrogen iodide.

2HI(g) — Hylg) + Tx(e)
The rate expression for this reaction is
F = - dHI)/dt = k[HI]?
Fig:heplmufrvmrmnmmmisshumin

RATE ——

COMCENTRATION OF

The rate constants of second-order reactions in which the REACTANT ——=
two mnmu,_ although different, have the same initial | Fig. 6. The plot of r wersus concentration
concentration, are also determined with the belp of Eq.25. - ___fora sccond-onder Fesction.
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‘3. Integration of Rate Expression for Third-Order Reactions

Let us consider a third-order reaction of the type
A — P

Let a be the initial concentration of A and x the amount of A that has reacted at time f so that
the amount of A remaining at time ¢ is @ - x. The differential rate equation is

r-%=k‘.’[n—x}, =--ﬂﬁ]

where k; is the third-order rate constant. Separating the' variables and integrating, we get

JaTe [aenfe

or I{_n-!ﬂ_;?_ =ky + C vy
To determine the integration constant, C, we know that at 7=0, x=0 so that C=1/2 at,
Substituting in Eq. 27, transposing and solving for k;, we gel _ .
| | 1) o 1f xe-2 (28
b ’%[{u_x}ﬁ. u‘] :':Lz@_.p

4. Integration of Rate Expression for Zero-Order Reactions. Examples are known of reactions
in which the reaction rate is not affected by changes in concentrations of one or more reactants.
These are called zero-order reactions. In such reactions, the rate may be determined by some other
limiting factor such as the amodnt of catalyst used ifi a“catalytic reaction: or the Intensity of light
absorbed in a photochemical reaction. Mathematically, for a zero-order reaction A — P,

r=-dA)d =k -{29)
where kj is the rate—constant. Rearranging,
- d[A] = kedt - . .30

If at ¢=0, the initial- concentration is [A]y and the concentration ar 1=1, is [A], then, integration
yields

[Man - e
uhﬂ =)
so that ket = [A}g - [A]

or - kg =1t ([A = [A]) " s m T - LB
Eq. 31 is the integrated rate equation for a zero-order reaction.
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Half-Life Time of alltn:_tiu ,

In order to characterize the rate at which a chemical reaction may proceed, it is customary
to introduce 2 convenient parameter called the half-life time of the reaction. It is defined as the
time required for the reaction to be half completed and is denoted by the symbol, f;,;. It can be
related to the corresponding rate constant. .

L. 4y for a Firsi-Order Reaction. It follows from Eq. 12 that at x=a/2, r=1;. Hence,
a L 1oy 0:693

t| = -I— In
hn a-@iz) 4n hin

Thus, .t =068k o -y S . 1)

Example 20. The rate constant for a first-order reaction is 1-54x 10 1. Caleulate its Balf-ife time,
. Solution : Substituting the data directly in Eq. 32, we have -
0-69 069
g = = = 450 s
! R TIRG

Example 1. The half-life of the homogeneous gaseous reaction S04Cl; — SO; + Cl, which obeys firsi—
order kinetics, is B-0 minutes. How long will it take for the concentration of S0,Cl; to be reduced to 1% of
the initial value 7 o i -

Solution : From Eq. 32, by rearranging. we get -

. b o 000 069
2 8 -0 min
a
a=x
Coar tal g A .1
: k  a-x  0087min!

= 0087 min~"

For a first-order reaction, &, '-:— In

o (122) = 5293 i

Example 22. In an enzyme nlinlnn, sucrose undergoes fermentation. If 0-10 M solution of sucrose is
lnlﬂInﬂilldlnM!MHHMﬂﬂH_thiﬂu‘ﬂlﬁerﬁn.ﬂmtm

Solution @ Since on doubling the time from 10 hours to 20 hours, fractional reduction of sucrose concentration
also doubled, the reaction must be of the first order.

Since for a first-order reaction, fy;=0-693/k,, hence

0-693 0-653
,t - = - =
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2.ty for a Second-Order Reaction. From Eq. 25, we see that at x=a/2, r=iyn. Hence,

bl __[ al2 ] I ™ RN
LTE ﬂiﬂ - @ 1} UTE ﬂiﬂfl] ﬂlfu:
Thus, ta = Uikaa) ..(33)

From Eq. 33, we find ‘that 1, ¢f a second-order reaction is inversely proportional to the initial
mmmmuoq of the reactant and, thys, it does, pot remain constant as e sreaction proceeds.

‘Exaple 25, e rite Voddlulh 10"a second sider réaction is' 333 10°7 dim® msol™! s°L, If the initial
.mnmtnllm aof the ulclnt Is 005 -ﬂ dm, uluhh.- its half-life.
L Ty aphanbea fimniies. oo b
Euhtim : Substituting in Eq. 33, we have

1
fjn = w 600 s = 10 min
12 3% 103 dov mal™ 8T X3 x 1072 mol daY)

3. 173 for an nth-Order Reaction. In general, for an mh-order reaction, nA —» Products,
r = dlAJd = kJA]",
It has been shown in Example 26, that

21 - - - - |
g =——— M)
17 *ﬂ il l]ﬂ;_l

wller:aulsth:mmumtmﬂouuf&mdt,mmnm-unhxnmmm From Eq. 34 we sce
that

= gt L - ) 35)

It is easy to see trom Eq. 35 that for a first-order reaction (n-l].:m:smd:pcndmt of @, for a
second-order reaction (n=2), fy3 = l/ag, for a third-order reaction (n=3), fn = l.f[q.} and 50 -on.
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-r -"i"l
Example 26. Derive an expression for the half-Ufe of sn mh-order reaction where n = 2.

Solution : An nth-order reaction may be represented as
AA  —s  Products

The differential rate equation is ] Lt | _ 1
i g - dAVd = kJAP" ' i)
where k, is the mh-order rate constant.

Separuung the variables and integrating. we obain

A
. ¢ '

or f W fiii)
where C is the constant of integration which we have 1o determine.

Let [A] = a and [Aly = @y the initial concentration. Then, Eq. (i) can be written as

1

| ] '1..[._-|;¢"" rl-': cenfiv)
Mir=0, a=ay sothe e - 'J":" 114 ) veef¥)
Substitwting for C in Eq, (iv), we get .- : _
IR IR Rl )
"TEm- H[-'*' -rr'] . T
When r=ng. a=ay2 so tha from Eq. (w), 4
i I i
ey 2 = u[ (82" n;"] i
o ol ._l._"_-l_ . wea
TR (i)

which is the desiregl expression. that for an th-onder reaction, fyy-o¢ (Liay™~" where n 22.

——
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METHODS FOR DETERMINING THE ORDER OF A REACTION

The order of a reaction is never known before hand, though majority of reactions are of the first
or of the second order. The following methods are commonly used for determining the order of a
reaction. :

1. The Use of Differential Rate Expressions. According to this
method, which was devised by van't Holf, the rate of an nth-order
reaction is given by

kgt - .(36) Slope = a
Taking logs, we have :
"Inr=Ink, +nalc. (37)

Thus, if the double-logarithmic plot of rateversus concentration
;wuanmghtliue meuthe:kpegimuumueofnamm e —>
intercept gives In k, (Fig. 7). - Fig. 7. Plot of In r versus In ¢ for an

" Also, if r; and ry are the rates at two dlfﬁ:rcnt,g'n:n:tl.m nih-order redction.
concentrations ¢; and c;, then

5 -dgldt ._Iff...(fl.]
) ~dc, /dt k.t‘ﬂ €

Taking Imp ln-ﬁ- - nInJ- whence n = In(r/n) ..(38)
@ - lnfglg) : N '
2.'The I.Tu of luw:l Rate. Expressions. We have already demonstrated this method in solving
problems for reactions of various orders, This method can be used either analytically or graphically.
In the analytical method, we assume a‘certain order for the reaction and calculate the rate vonstants
from the given data, The constancy of the k-values obtained suggests that the assumed order is
correct. If the k-vilues obtained are not constant, we assume a different order for the reaction and
again calculate the k-values using the new rate expression and see if k is constant.

In the graphical method, if the plot-of In ¢ versus ¢ is a straight line, the reaction is of the first
order. Similarly, the integrated expression for the second-order reaction can be utilized graphically
to ascertgin if the reaction is of the second order, and so on.

3. The Half-life Method. We have shown above that, provided all reactants are present in the
'E same molar concentrations, the half-life, £, of an mth-order reaction is given by Eq. 35.

If two experiments are carried out at different initial molar concentrations, then

o Fr o

Intercept = in k,

Uinh _ [ﬁ]ﬂql or wplizh | -)h%
: (hnh % U‘ml: a
ar - =]+ M 1"{39}

In(ay /)

: This method was suggested by Ostwald. The determination of half-lives of a reaction at two
d.'lﬂ'"erent initial concentrations leads to the determination of n.
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4. Isolation Method. Sometimes the kinetics of a reaction are studied in successive experiments
by keeping the concentrations of all but one reactant in large excess so that the result gives the order
with respect to the reactant whose concentration is changing significantly. Thus, the synthesis of HI
from H; and 1; is pseudo first-order with respect to H; in the presence of large excess of I, and also
pseudo first order with respect 1o I; in-the presence of large ‘excess of H;. Hence, overall it'is-a
second order reaction.

Molecularity of Reaction

Another property of a reaction called molecularity helps in
understanding its mechanism. The number of reacting species
(atoms, ions or molecules) taking part in an elementary reaction,
which must collide simultaneously in order to bring about a
chemical reaction is called molecularity of a reaction. The reaction
can be unimolecular when one reacting species is involved, for example,
decomposition of ammonium nitrite.

I‘AIH,;I\IO2 - N, + 2H20
Bimolecular reactions involve simultaneous collision between two
species, for example, dissociation of hydrogen iodide.

2HI — H, + L,

Trimolecular or termolecular reactions involve simultaneous collision
between three reacting species, for example,

2NO + O, — 2NO,

The probability that more than three molecules can collide and

react simultaneously is very small. Hence, the molecularity greater
than three is not observed.

Order and Mulzqﬂlrity of Complex Reactions. Many reactions are known to ogeur n two or
more steps. Such reactions, from the point of view of chemical kinietics, are often termed a§ complex’
reactions. Each step of the reactlon, however, is a simple reaction, l.¢., an elementary reaction,

Each elementary reaction has its own molecularity depending upon the number of molecules of the
reactant or reactants taking part in that reaction. Consider a hypothetical reaction

[Type text] Page 15



Chemical Kinetics

A+ — P+
taking place in four steps as shown below :

L A+B — C+D

2 A+C — E

3 A+D — F

4, E+F+B — P+0Q
IA+2B — P+Q

- [Each step represents an clementary reaction. The rates of the various elementary reactions
generally dli:fl:'l' fmm one another. Let the first elementary reaction be the slowest. The rate of the
overall reaction, evidently, cannot be faster than the rate of the slowest reaction.

The rate of reaction (1), which is supposed to be the slowest, is given by
r o= - dcy/di = - degldr = HAJ[B] "

This is also the rate of the overall reaction. The order of the slowest reaction and therefore, the
order of the overall reaction will be 2. ' L '

The molecularity of the slowest reaction, Le., the first elementary reaction, is also 2. The
molecularity of the succeeding reactions is 2, 2 and 3, respectively.

_Th:uﬂu-uf:m!npkxmﬂimhghulylumdnn!lh::hmslmpindmmqmnt
various steps involved in that reaction. The molecularity of a complex reactioa as such, however,
has no significance. Each step (elementary reaction) involved in the complex reaction has its own
value. This is given by the number of molecules of the reactant or reactants taking part in- that
particular. step of the overall reaction. The molecularity of the slowest step is the same as the order
of the overall reaction. - ' )

Thus, from the discussion, till now, we conclude the following:
(i) Order of a reaction is an experimental quantity. It can be zero and
even a fraction but molecularity cannot be zero or a non integer.

(ii) Order is applicable to elementary as well as complex reactions
whereas molecularity is applicable only for elementary reactions.
For complex reaction molecularity has no meaning.

(iiij For complex reaction, order is given by the slowest step and
generally, molecularity of the slowest step is same as the order of
the overall reaction.
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Activated Complex Theory (ACT) of Bimolecular Reactions . .

As a result of the development of quantum mechanics, another theoretical approach to chemical
reaction-rates has been developed which gives a deeper understanding of the reaction process. It is
known as the absolute reaction rate theory (ARRT) or the transition state theory (TST) or, more
commonly, as the activated complex theory (ACT), developed by Eyring,  Polanyi and Evans in 1935,
According to ACT, the bimolecular reaction between two molecules Ay and B, progresses through the
formation of the so-called activated complex which then decomposes to yield the product AB, as
illustrated below :

A+ B = (AB)Yf — 2B
o A—A . A A ? ' f'
R R H N +
B—B °© BB B B
Reactants Activated Product
complex

[Type text] Page 17



Chemical Kinetics

TRANSITION STATE ) TRANSITION STATE
(Activated complex) (Activated complex)

---------------------

-------- sy
’E' .
& *{”
Products Besctants - -
REACTION COORDINATE =t REACTION COORDINATE ——
() Exotherthic reaction {b) Endothermic reaction

Fig. 12. The profile of energy versus reaction coondinate in ACT in the case of an exothermic and an endothermic reaction.

For the ll:l.mnudjrmmi:: formulation of the :nuul.ud r.'unmlt.:r. theory, consider a suml:
bimolecular ren:ﬂun ' :
¥ N

A = (Anf s, Products | CLA%8)

where (AB)" is the activated complex and K* is the equilibrium constant between the reactants and
“activated complex: As said above, in (AB)* one of the vﬂ:manﬂdcgrmufﬁuﬁjmhﬂbﬂﬂﬂti
translational degree of freedom. From classical mechanics, the energy of vibration is given by RT/N,
[nrhrwhmt,isth:Bnltmmmﬂnhnuﬁmqummmmhmu it is given by hv so
that hv = RT/IN, or v = RTIN,h = kgl/h. The vibrational frequency v is the rate at which the
activated complex molecules move across the energy barrier. Thus, the rate constant k can be
identified with v, -

The reaction rate is given by
- AV = xhyl(ABY] = x(kgTIA)(ABY] ()

wh:r:n::famrg.undmmmu is a measure of the probability that a
molecule, mq:ﬂpgmnwrd:hnhﬂlltupmmmm:d?dﬂrm The value of xis
taken 0 be unity ; it is from the rate expression. The concentration of the activated

cﬁu‘:p[::, [fiﬂﬂmbt i Wﬁm expression

whence [(ABY] = K*[A][B] - A60)

Substituting in Eq. 59, we obfain
= dA)idr = (kaT7h) K[A}B) _ ~61)

M,ﬁermnnmumtjmajrh:mu i
= (kgTTh) K ' ) wi62)

Tlltathhrmm ﬁﬁlﬂumﬁ'unhcﬂptemdmtrmnf (AG®Y', c:llndﬂrm:dﬁihhflm
energy of activation. Since for the activated complex, we can write
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(AG°Y = -RTln K and (AG™Y' = (AH®Y - TIAS®Y, - A63)

we obtain KT _ o~ (0G*TIRT_ JasfIR ~(AH*/YIRT 460
Hence, substituting in Eq. 62, we get :

ky = (kzTTH) eﬂ!‘ﬁle—l‘ﬂﬂ'ffﬂ - {65

Eq. 65 is the well known Eyring equation. Here (AS®)" is the standard entropy of activation and
{wfuﬁwmwufmmam&.mufm:uﬁmmmm
{h?ﬂlnmmmﬂﬁmhqﬂtmqﬂtﬂhmnnhpuﬁcipnﬁmufﬂ:mlvutinlh
_mwagd complex, fortunately, the Eyring equation holds for reactions in solution, t0o. The
American chemist Heary Eyring (1901-1981) was a brilliant kineticist ; however, he was not awarded
the Nobel Prize in chemistry. :
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